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Abstract.10

Background: Detecting early-stage Alzheimer’s disease (AD) is still problematic in clinical practice. This work aimed to
find T1-weighted MRI-based markers for AD and mild cognitive impairment (MCI) to improve the screening process.
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Objective: Our assumption was to build a screening model that would be accessible and easy to use for physicians in their
daily clinical routine.
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Methods: The multinomial logistic regression was used to detect status: AD, MCI, and normal control (NC) combined with
the Bayesian information criterion for model selection. Several T1-weighted MRI-based radiomic features were considered
explanatory variables in the prediction model.
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Results: The best radiomic predictor was the relative brain volume. The proposed method confirmed its quality by achieving
a balanced accuracy of 95.18%, AUC of 93.25%, NPV of 97.93%, and PPV of 90.48% for classifying AD versus NC for the
European DTI Study on Dementia (EDSD). The comparison of the two models: with the MMSE score only as an independent
variable and corrected for the relative brain value and age, shows that the addition of the T1-weighted MRI-based biomarker
improves the quality of MCI detection (AUC: 67.04% versus 71.08%) while maintaining quality for AD (AUC: 93.35%
versus 93.25%). Additionally, among MCI patients predicted as AD inconsistently with the original diagnosis, 60% from
ADNI and 76.47% from EDSD were re-diagnosed as AD within a 48-month follow-up. It shows that our model can detect
AD patients a few years earlier than a standard medical diagnosis.
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Conclusion: The created method is non-invasive, inexpensive, clinically accessible, and efficiently supports AD/MCI screen-
ing.
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INTRODUCTION29

Alzheimer’s disease (AD) is a progressive, neu-30

rodegenerative brain disease that causes memory31

loss, changes in behavior, and problems with every-32

day tasks. AD is the most common form of dementia33

and is responsible for 60% to 80% of dementia cases34

[1, 2]. The intermediate stage from normal cogni-35

tion to dementia is mild cognitive impairment (MCI).36

People suffering from MCI have a high rate of pro-37

gression to dementia over a relatively short period,38

but not everyone will develop AD [3]. Within a 3-39

year follow-up period, about 35% of patients with40

MCI status progress to AD or dementia [4]. A yearly41

conversion rate equals 5%–10% [4].42

Early detection of AD and MCI is crucial because43

a patient can start treatment to alleviate the symptoms44

of the disease, teach how to live with this disease or45

take part in medical trials.46

This work aims to find easily accessible biomarkers47

for AD and MCI to improve the screening process.48

The screening should be fast, not expensive, avail-49

able in daily medical practice and easy to use by50

physicians. An additional challenge is to predict the51

diagnosis of AD while a patient is still mildly cogni-52

tively impaired.53

Many different methods to predict the diagnosis54

have been proposed in recent years. These methods55

are based on machine learning algorithms [5–13],56

regression models [4, 14–18], and other methods57

[19–24]. Many different biomarkers are used to clas-58

sify AD and MCI. The first group of biomarkers is59

based on structural brain atrophy obtained from mag-60

netic resonance imaging (MRI) [7–9, 13]. The second61

group of biomarkers uses the evaluation of brain62

metabolic changes, measured by fluorodeoxyglucose63

positron emission tomography (FDG-PET) imaging64

[25, 26]. Fluid biomarkers are the third group, and65

this is connected with amyloid and tau obtained66

from cerebrospinal fluid (CSF) [6, 10, 27]. More-67

over, diffusion tensor imaging (DTI) and functional68

MRI (fMRI) are also applied for the detection of AD69

and MCI [5, 6, 28, 29]. Most studies use multiple70

biomarkers in the early diagnosis of AD and MCI and71

are based on a combination of two or more following72

biomarkers: MRI-based biomarkers, fluid biomarkers73

or PET-based markers [5, 6, 10, 24, 30]. The avail-74

ability of all three biomarkers (PET and CSF and MRI75

or DTI or fMRI) is limited due to the cost, time, and76

invasiveness of the methods (PET and CSF) [24, 31].77

This article presents a method that improves an78

MCI and AD screening process based on easily acces-79

sible clinical biomarkers like age and Mini-Mental 80

State Examination score (MMSE) [32], available in 81

medical history for almost every patient with sus- 82

picion of dementia. Our approach strength is the 83

lack of use of additional biomarkers based on blood, 84

CSF, PET, or other advanced imaging techniques. 85

We suggest using the T1-weighted MRI-based dis- 86

ease progression radiological biomarkers in addition 87

to those clinical predictors to support the screen- 88

ing process. In patients suffering from AD, the brain 89

shrinks, and the space filled with CSF increases [33, 90

34]. Moreover, this brain shrinkage causes the brain 91

to be more wrinkled. It means that sulci are notice- 92

ably widened, and gyri are narrowed. Considering the 93

cross-section of a brain, we can notice that the shrink- 94

ing causes the contour of the brain tissue becomes 95

longer. Because of that, we consider the relative 96

brain volume and global measure of brain wrinkling 97

(shrinkage factor, which is defined below) as imaging 98

biomarkers. First, the cross-section of the brain with 99

CSF and brain tissue already segmented were con- 100

sidered. Because of the properties of MRI, where the 101

cubical voxel represents the volume unit, the brain 102

surface can be quantified and approximated by the 103

area of chosen voxel faces. Then, using the gradi- 104

ent method applied to the segmented brain tissue, we 105

can identify the contour of brain tissue for a partic- 106

ular cross-section and calculate the area of the brain 107

surface related to the particular cross-section by mul- 108

tiplying the length of the brain outline by the voxel 109

face area. 110

T1-weighted MRI is standard medical imaging, not 111

as expensive as PET or FDG-PET, not invasive, and 112

it is easily available, so this MRI-based biomarker is 113

perfect for supporting the screening process. 114

MATERIALS AND METHODS 115

Data used in the study were obtained from 116

the Alzheimer’s Disease Neuroimaging Initiative 117

(ADNI) database (http://adni.loni.usc.edu) and The 118

European DTI Study on Dementia (EDSD). The 119

ADNI was launched in 2003 as a public-private part- 120

nership led by Principal Investigator Michael W. 121

Weiner, MD. The primary goal of ADNI has been 122

to test whether serial MRI, PET, other biological 123

markers, and clinical and neuropsychological assess- 124

ment can be combined to measure the progression of 125

MCI and early AD. For up-to-date information, see 126

http://www.adni-info.org. The EDSD is a multicenter 127

framework created to study the diagnostic accuracy 128

http://adni.loni.usc.edu
http://www.adni-info.org
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and inter-site variability of DTI-derived markers in129

patients with manifest and prodromal AD [35].130

The standard analysis dataset of the ADNI-1131

project was used (collection name: ADNI1: Complete132

1Yr 1.5T; subjects who have both 6- and 12-month133

scans available) to build a statistical model for pre-134

dicting AD or MCI status [36]. This dataset was135

randomly split into five subsets to conduct internal136

testing and 5-Fold Cross-Validation [37]. In the sec-137

ond stage, the final statistical model was built on138

the whole dataset, and that model was tested on the139

independent dataset from the EDSD database. The140

dataset of the ADNI-1 project includes MPRAGE T1-141

weighted 3D scans (1.5 T) and several clinical and142

neuropsychological measures acquired from healthy143

controls (NC), MCI subjects, and AD.144

The second dataset used in the analysis comes from145

the EDSD database [35]. The EDSD was started in146

2010. The coordinator of this database is the German147

Center for Neurodegenerative Diseases (DZNE) in148

Rostock, Germany. Since 2013, the EDSD has also149

collected the data of subjects with MCI. The dataset150

used in the preparation of this article includes data151

from subjects who were marked as “not dropout".152

Our analysis was based on a T1-weighted MRI.153

ADNI and EDSD subjects were scanned on General154

Electric (GE) scanners, Siemens scanners and Philips155

scanners. Supplementary Tables 1 and 2 show details156

of scanners used in ADNI and EDSD, respectively157

[35, 38].158

ADNI dataset (dataset 1) is a reference dataset,159

and the EDSD dataset (dataset 2) is an independent160

validation dataset. Its experimental design and patient161

clinical characteristics are similar to the ADNI’s and162

are available on the project website. Additionally, the163

EDSD dataset was divided into two subsets related to164

MRI scanning options: 1.5T and 3T.165

For the ADNI study, general inclusion/exclusion166

criteria are as follows:167

1. Normal subjects: MMSE scores between 24–30168

(inclusive), a CDR of 0, non-depressed, non-169

MCI, and non-demented.170

2. MCI subjects: MMSE scores between 24–30171

(inclusive), a memory complaint, objective172

memory loss measured by education-adjusted173

scores on Wechsler Memory Scale 7 Logical174

Memory II, a CDR of 0.5, absence of significant175

levels of impairment in other cognitive domains,176

essentially preserved activities of daily living177

and an absence of dementia.178

3. AD subjects: MMSE scores between 20–26 179

(inclusive), CDR of 0.5 or 1.0, and meeting 180

NINCDS/ADRDA criteria for probable AD 181

[39]. 182

ADNI provided intensity normalized and gradi- 183

ent un-warped TI image volumes [36]. The EDSD 184

native data were used, and N4 bias field correc- 185

tion in the N4ITK framework was applied [40]. 186

For both datasets: ADNI and EDSD, skull strip- 187

ping was achieved in the SPM 12 software package 188

(https://www.fil.ion.ucl.ac.uk/spm/) [41]. 189

The clinical characteristics of subjects from the 190

ADNI and EDSD datasets were summarized by the 191

diagnostic group (NC, MCI, AD) and presented in 192

Table 1. The following variables were considered at 193

baseline: age, sex, MMSE, and years of education. 194

For quantitative measures, values of mean and SD 195

were calculated, and for categorical variables, the 196

percentage was presented. The comparisons between 197

groups were conducted using the nonparametric 198

Kruskal-Wallis test for quantitative measures (the 199

Conover test was used in the post-hoc analysis), 200

and the χ2 test to compare proportions and p-value 201

is presented in Table 1. Additionally, Table 1 con- 202

tains effect size η2 (eta-squared) with 95% confidence 203

interval [42, 43]. 204

Segmentation of CSF was conducted for each sub- 205

ject separately using the adjusted MiMSeg algorithm 206

[44]. This procedure was based on the Gaussian mix- 207

ture model and allowed us to separate CSF from the 208

brain by finding the threshold on the greyscale. 209

Two additional descriptors were defined based on
T1-weighted MRI scans to numerically represent
the changes in the brain structure. The first variable
(called ‘relative brain volume’ (RBV) and shown as
a percentage) was defined as the volume of the brain
without CSF (V-CSF) divided by the volume of the
whole brain (V) multiplied by 100%:

RBV = V - CSF/V 100 (1)

The second variable is the shrinkage factor (SF).
The shrinkage factor was defined as the number of
voxels on the surface of the brain without CSF mul-
tiplied by the face area of the voxel (S-CSF) with
reference to the volume of the brain without CSF
(V-CSF) and multiplied by 100%:

SF = S - CSF/V - CSF 100 (2)

The additional descriptor is the volume of lateral 210

ventricles. The Automatic Lateral Ventricle delin- 211

eatioN (ALVIN) algorithm was used to obtain the 212

https://www.fil.ion.ucl.ac.uk/spm/
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Table 1
Clinical characteristics of the ANDI and EDSD dataset

Characteristic NC MCI AD Unadjusted p
value

Effect size η2

[95%CI]

ADNI, n 194 311 133 – –
Age, mean (SD) [y] 75.9 (5.08) 74.9 (7.06) 74.7 (7.59) 0.4643∗ 0.0053 [0; 0.0199]
Education, mean (SD)
[y]

16.0 (2.79) 15.7 (3.00) 14.7 (3.11) 0.0003∗
0.0004†
<0.0001‡

0.0253 [0.0057;
0.0523]

MMSE score, mean
(SD)

29.1 (1.03) 27.0 (1.78) 23.5 (1.91) <0.0001∗
<0.0001†‡§

0.6023 [0.5581;
0.6387]

Female [%] 47.9 35.4 48.1 0.0053 –
EDSD, n 194 152 136 – –
Age, mean (SD), [y] 68.7 (5.90) 71.2 (6.76) 72.4 (8.28) <0.0001∗

0.0001‡
<0.0001§

0.0497
[0.0170; 0.0900]

Education, mean
(SD), [y]

13.1 (3.67) n = 173 12.4 (3.35) n = 132 10.3 (3.33) n = 134 <0.0001∗
<0.0001†‡

0.1036
[0.0538; 0.1572]

MMSE score, mean
(SD)

27.4 (6.49) 26.3 (3.14) 20.8 (5.36) <0.0001∗
<0.0001†‡§

0.2198
[0.1569; 0.2793]

Female [%] 51.0 43.4 56.6 0.07854 –

∗Kruskal-Wallis rank sum test; †Conover test: AD versus MCI; ‡Conover test: AD versus NC; §Conover test: MCI versus NC.

Fig. 1. The scheme of key steps of data preprocessing and data analysis.

volume of lateral ventricles. ALVIN is a fully auto-213

mated algorithm to segment the lateral ventricles214

from MRI images (ALVIN works within SPM8) [45].215

Multinomial logistic regression was used to predict216

disease status. The following independent variables217

were considered: age, sex, years of education, MMSE218

score, relative brain volume, shrinkage factor, and219

volume of lateral ventricles. The dependent variable220

was disease status: AD, MCI, and NC (reference sta-221

tus). Models with two-way interaction terms were222

also analyzed. A 5-fold cross-validation was exe-223

cuted. The Bayesian information criterion (BIC) was224

used to select the best model [46]. The compari-225

son between two nested models was conducted using226

ANOVA. Additionally, the Bayes factor (exp(�BIC))227

was calculated for two compared models. A maxi-228

mum likelihood estimation procedure estimated the229

parameters of a multinomial logistic regression (poly-230

tomous) model. For coefficient values, the adjusted231

odds ratio was calculated with its 95% confidence 232

interval according to the method proposed by Woolf 233

[47]. The receiver operating characteristic curve 234

(ROC), together with the area under the curve (AUC) 235

for the classification problem, were estimated for both 236

datasets [48]. 237

The scheme of key steps conducted during data 238

analysis is presented in Fig. 1 (Supplementary Fig- 239

ure 1 shows detailed information). 240

RESULTS 241

The tests on ADNI clinical characteristics indicate 242

that the differences between at least two medians are 243

statistically significant for the following variables: 244

years of education and MMSE score. For the indepen- 245

dent EDSD dataset, the differences between at least 246

two medians are statistically significant for all vari- 247

ables: age, years of education, and MMSE score. The 248
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effect size of age is very small for both datasets, ADNI249

and EDSD. The effect size of education is small for250

ADNI and medium for EDSD, and the effect size of251

the MMSE score is large for ADNI and very large252

for EDSD. Results of the χ2 test inform that the null253

hypothesis, stating that the proportion of females is254

the same in NC, MCI, and AD, should be rejected for255

ANDI but not for the independent EDSD dataset.256

For all cross-validation analyses, the final model257

has the same structure. Disease status was best258

predicted by the synergy of relative brain volume,259

MMSE score, and age, where age has a correc-260

tive function. A comparison between the model261

without relative brain volume and age as predic-262

tors (only MMSE was taken into account) and the263

model with the relative brain volume and age added264

showed the statistical significance of the differences265

(p < 0.00001; BIC = 785.54 for the model with ver-266

sus BIC = 809.68 for the model without relative brain267

volume and age). The value of the Bayes factor for268

compared models is 132646731.7, which indicates269

very strong evidence for the model. No interaction270

increases the model performance quality.271

Supplementary Table 3 presents average values272

of coefficients (with a 95% confidence interval)273

obtained in 5-fold cross-validation. NC is a reference274

group.275

For each predictor, the adjusted odds ratio was cal-276

culated (see Supplementary Table 4). For each one277

percentage point decrease in relative brain volume,278

the odds of AD increase by a factor of 1.35 (95% CI279

[1.27; 1.44]) and the odds of MCI disease increase by280

a factor of 1.19 (95% CI [1.15; 1.24]) in reference to281

healthy controls. Among subjects with MCI, for each282

one percentage point decrease in relative brain vol-283

ume, the odds of AD increase by a factor of 1.13 (95%284

CI [1.10; 1.16]). The decrease of 1 point in MMSE285

score multiplies the odds of AD by 8.15 (95% [7.53;286

8.81]) in reference to healthy controls. The odds of287

MCI disease are predicted to grow about 2.65 times288

larger (95%CI [2.52; 2.79]) for each reduction of a289

point in the MMSE score among healthy controls.290

For each 1-point decrease in MMSE, the odds of AD291

increase by 3.07 (95% CI [2.99; 3.16]) for subjects292

with MCI.293

Table 2 contains average values of statistics of pre-294

diction (with a 95% confidence interval) obtained in295

a 5-fold cross-validation for ADNI.296

Values of areas under the ROC curve (AUC) were297

very high for classes AD versus others and NC versus298

others, and 5-fold cross-validation for ADNI resulted299

in 94.18% and 90.01%, respectively. The value of300

three classes (AD versus others, NC versus others, 301

MCI versus others) of balanced accuracy is 76.10%. 302

A specificity of 94.06% was gained for AD versus 303

others, and it is the highest value; the sensitivity for 304

this class is 63.99%. The value of Negative Predictive 305

Value [%] (NPV) is 90.91% for AD versus oth- 306

ers, while the value of Positive Predictive Value [%] 307

(PPV) is 74.41%. The specificity, sensitivity, NPV 308

and PPV values for NC versus others are 87.84%, 309

70.08%, 87.13%, and 71.66%, respectively. The pair- 310

wise analysis gave a very large value of AUC for the 311

classification of AD versus NC (99.65%). The speci- 312

ficity, sensitivity, NPV and PPV value for AD versus 313

NC is 100%. 314

The chosen multinomial logistic regression model 315

was also trained on the whole ADNI dataset and tested 316

on the independent EDSD dataset. Values of model 317

coefficients are presented in Supplementary Table 5. 318

As before, for each predictor, the adjusted odds 319

ratio was calculated (see Supplementary Table 6). 320

One can notice that for each one percentage point 321

decrease in relative brain volume, the odds of AD 322

increase by 1.35 (95% CI [1.25; 1.46]) in reference 323

to healthy controls and the odds of MCI disease 324

increase by a factor of 1.19 (95% CI [1.13; 1.26]) 325

which is very similar to the estimates obtained in 326

the first stage. Among subjects with mild cognitive 327

impairment, for each one percentage point decrease 328

in relative brain volume, the odds of AD increase by a 329

factor of 1.13 (95% CI [1.10; 1.16]). For each reduc- 330

tion of a point in MMSE score, the odds are predicted 331

to grow about 8.06 times larger (95%CI [6.48; 10.04]) 332

for AD and 2.64 (95% [2.27; 3.08]) for MCI in ref- 333

erence to healthy controls. The decrease of 1 point 334

in MMSE score multiplies the odds of AD by 3.05 335

(95% [2.85; 2.36]) among subjects with MCI status. 336

The obtained model was tested on the independent 337

validation EDSD dataset, and Table 2 presents the 338

results. Additionally, Supplementary Table 7 contains 339

results for two subsets of EDSD: 1.5T and 3T. 340

The validation results for the independent dataset 341

(EDSD) have shown that values of areas under the 342

ROC curve (AUC) for classes: AD versus others and 343

NC versus others are 89.95% and 85.36%, respec- 344

tively. The value of three classes (AD versus others, 345

NC versus others, MCI versus others) of balanced 346

accuracy is 76.83%. Specificity of 90.17%, the sen- 347

sitivity of 69.85%, NPV of 88.39%, and PPV of 348

73.64% were gained for AD versus others. The speci- 349

ficity, sensitivity, NPV and PPV for NC versus others 350

are 88.19%, 73.20%, 83.01%, and 80.68%, respec- 351

tively. The pairwise analysis confirmed the very large 352
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Table 2
Quality performance indices of prediction system (with 95% confidence interval)

Statistics AD versus others NC versus others AD versus NC MCI versus NC AD versus MCI

ADNI (Expanded model: Status of disease ∼ Relative brain value + MMSE + Age)
Sensitivity [%] 63.99 70.08 100 80.67 63.99

[48.61; 79.37] [61.92; 78.24] [75.63; 85.72] [48.61; 79.37]
Specificity [%] 94.06 87.84 100 70.08 88.22

[90.93; 97.19] [85.17; 90.51] [61.92; 78.24] [81.53; 94.9]
Positive Predictive Value [%] 74.41 71.66 100 79.84 74.41

[65.56; 83.26] [67.12; 76.20] [76.71; 82.96] [65.56; 83.26]
Negative Predictive Value [%] 90.91 87.13 100 71.66 82.71

[87.34; 94.47] [84.19; 90.07] [67.12; 76.20] [76.16; 89.26]
Prevalence [%] 20.84 30.41 38.51 59.13 34.11

[20.42; 21.26] [30.05; 30.77] [34.3; 42.73] [57.50; 60.76] [32.94; 35.29]
BalancedAccuracy [%] 79.02 78.96 100 75.38 76.1

[71.65; 86.4] [75.23; 82.69] [72.10; 78.65] [68.52; 83.69]
AUC [%] 94.18 90.01 99.65 79.30 90.78

[92.09; 96.28] [87.03; 92.99] [99.18;100.00] [74.35; 84.24] [87.45; 94.11]
Cutoff point 0.16 0.30 8.38 47.24 30.13

[0.05; 0.26] [0.20; 0.40] [3.88; 12.87] [35.28; 59.21] [10.32; 49.95]
EDSD (Expanded model: Status of disease ∼ Relative brain value + MMSE + Age)

Sensitivity [%] 69.85 73.20 96.94 75.78 71.43
[62.14; 77.57] [66.96; 79.43]

Specificity [%] 90.17 88.19 93.42 77.17 80.17
[87.04; 93.31] [84.47; 91.92]

Positive Predictive Value [%] 73.64 80.68 90.48 69.78 79.83
[66.04; 81.25] [74.85; 86.51]

Negative Predictive Value [%] 88.39 83.01 97.93 82.08 71.85
[85.04; 91.73] [78.80; 87.21]

Prevalence [%] 28.22 40.25 39.20 41.03 52.36
BalancedAccuracy [%] 80.01 80.70 95.18 76.48 75.80
AUC [%] 89.95 85.36 93.25 71.08 85.74

EDSD (Basic model: Status of disease ∼ MMSE)
Sensitivity [%] 71.32 69.59 97.98 77.78 72.39

[63.72; 78.92] [63.11; 76.06]
Specificity [%] 89.6 89.58 93.10 73.37 79.03

[86.38; 92.81] [86.06; 93.11]
Positive Predictive Value [%] 72.93 81.82 90.65 66.67 78.86

[65.38; 80.48] [75.93; 87.70]
Negative Predictive Value [%] 88.83 81.39 98.54 82.82 72.59

[85.52; 92.13] [77.10; 85.67]
Prevalence [%] 28.22 40.25 40.57 40.65 51.94
BalancedAccuracy [%] 80.46 79.59 95.54 75.57 75.71
AUC [%] 90.19 85.87 93.35 67.04 86.14

AUC, the area under the ROC curve.

value of AUC for the classification of AD versus NC353

(93.25%). A specificity of 93.42% was gained for354

AD versus NC, and it is the highest value; the sensi-355

tivity for this class is 96.94%. The value of NPV is356

97.93% for AD versus NC, while the value of PPV357

is 90.48%. Additionally, Table 2 contains the valida-358

tion results for the independent EDSD dataset for the359

model built on the whole ADNI dataset with the single360

independent variable MMSE score. Results confirm361

that adding the relative brain volume and age as a362

corrective function for natural brain ageing improves363

the model. The value of AUC for MCI versus NC364

increases from 67.04% (for the model with MMSE365

score only) to 71.08% (for the model with the relative 366

brain volume and age added). 367

The ROC curve was used to summarize the pre- 368

diction of the model for ADNI and ESDS datasets 369

(Fig. 2). 370

Additionally, the logistic regression model was 371

built on the complete ADNI dataset to check which 372

predictors describe the change of disease status from 373

MCI to AD. The change from the baseline disease sta- 374

tus MCI to AD (which was the latest available disease 375

status during 48 months follow-up) was a depen- 376

dent variable (change from MCI to AD – 1, stable 377

disease status MCI – 0, the reference level). The fol- 378
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Fig. 2. The ROC curve for classification between AD, MCI, and NC: (a) The ROC curve for classification with average values of 5-fold
cross-validation (ADNI data): AD versus others, NC versus others; (b) The ROC curve for classification with average values of 5-fold
cross-validation (ADNI data): AD versus NC, MCI versus NC, AD versus MCI; (c) The ROC curve for classification using ADNI data as
training data and EDSD data (whole dataset) as test data: AD versus others, NC versus others; (d) The ROC curve for classification using
ADNI data as training data and EDSD data (whole dataset) as test data: AD versus NC, MCI versus NC, AD versus MCI.

lowing independent variables were considered: age,379

sex, years of education, MMSE score, relative brain380

volume, shrinkage factor, and volume of lateral ven-381

tricles. The progression of disease status from MCI to382

AD was best predicted by the following variables: rel-383

ative brain volume, MMSE score, and age, where age384

has a corrective function. A comparison between the385

model without relative brain volume and age as pre-386

dictors (only MMSE was taken into account) and the387

model with the relative brain volume and age added388

showed the statistical significance of the differences389

(p = 0.00004; BIC = 402.93 for the model with ver-390

sus BIC = 411.80 for the model without relative brain391

volume and age). The adjusted odds ratio was also392

calculated. For each one percentage point decrease393

in relative brain volume, the odds of the progression394

from MCI to AD increase by 1.19 (95% CI [1.10;395

1.29]) and for each reduction of point in MMSE score,396

the odds increases by 1.30 (95% CI [1.13; 1.50]).397

During the follow-up, some subjects have con-398

verted from MCI status to AD. Table 3 contains the399

number and percentage of subjects with changes in400

diagnosis during 6, 12, 18, 24, and 36 months of the401

follow-up in association with the prediction (ADNI402

datasets) and between 6 and 48 months of follow-403

up (ADNI and the independent EDSD datasets) for404

the models with (the expanded model) and without 405

the relative brain volume and age (the basic model). 406

The prediction of the expanded multinomial logis- 407

tic regression model in 5-fold cross-validation of 408

the ADNI dataset indicates that 30 subjects with 409

MCI screening diagnosis are predicted as AD sta- 410

tus. Among these subjects, predictions are in line 411

with 12 months of the follow-up diagnosis in 11 sub- 412

jects (36.67%). A similar calculation was conducted 413

for 6, 18, 24, 36, and up to 48 months of follow- 414

up (Table 3). The prediction (the expanded model) 415

was consistent within 48 months of the follow-up 416

diagnosis (we take into account the latest available 417

diagnosis status between 6 and 48 months follow- 418

up) for 18 subjects (60.00%) among 30 subjects with 419

MCI screening diagnosis and model prediction of 420

AD. One subject changed the diagnosis from AD to 421

MCI during follow-up, and this diagnosis is compli- 422

ant with the prediction. Fourteen subjects developed 423

MCI among NC subjects; the diagnosis is compliant 424

with the prediction for five subjects. 425

Prediction of the multinomial logistic regression 426

model on the independent EDSD dataset shows 427

similar results. Table 3 contains the number and 428

percentage of subjects with changes in diagnosis 429

from MCI to AD during four years of follow-up in 430
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Table 3
Compliance of the prediction with the change in diagnosis from MCI to AD

Change from MCI to AD Compliance of AD
prediction with the
follow-up diagnosis

AD prediction among
subjects
with MCI screen
diagnosis (only
patients with
follow-up data)

Compliance of AD
prediction with the
follow-up diagnosis

AD prediction among
subjects
with MCI screen
diagnosis (only
patients with
follow-up data)

Follow-up time Number of subjects (%) Number of subjects (%)
Expanded model Basic model

ADNI 6 months 5 (16.67%) 30 (100%) 4 (14.29%) 28 (100%)
12 months 11 (36.67%) 30 (100%) 9 (32.14%) 28 (100%)
18 months 13 (56.52%) 23 (100%) 12 (52.17%) 23 (100%)
24 months 11 (55.00%) 20 (100%) 11 (55.00%) 20 (100%)
36 months 11 (61.11%) 18 (100%) 10 (58.82%) 17 (100%)

EDSD Up to 48 months∗ 18 (60.00%) 30 (100%) 17 (60.71%) 28 (100%)
Up to 48 months∗ 13 (76.47%) 17 (100%) 12 (66.67%) 18 (100%)

∗48 months – we considered the latest available diagnosis status between 6 and 48 months follow-up.

association with the prediction (EDSD dataset). The431

multinomial logistic regression model (the expanded432

model) on the independent EDSD dataset predicts433

AD in 24 subjects with MCI screening diagnosis.434

Among these 24 subjects, we have follow-up data for435

17 patients, 13 (76.47%) patients transited from MCI436

to AD status, and they confirmed the expanded model437

prediction. The percentage may even be improved as438

some patients have not follow-up on their diagnosis.439

Additionally, results of the expanded model with the440

relative brain volume and age added show that per-441

centages of correctly predicted diagnosis status are442

higher for 6, 12, 18, and 36 months compared to the443

basic model without the relative brain volume and444

age. A similar result we have for the EDSD dataset445

within 48 months of follow-up. Results confirm that446

adding the relative brain volume and age (as a cor-447

rective function for natural brain aging) improves the448

model. The change in disease status within 6, 12, 18,449

24, 36, and 48 months is presented as a Sankey dia-450

gram in Fig. 3. For missing data, if data for one of451

the later months is available, we take data from the452

latest, previous available month; if not, we do not fill453

in missing data.454

DISCUSSION455

Our aim was to improve the classical screening456

process based on the MMSE score. We focused on457

finding the commonly available biomarker which458

improves screening. We obtained that the multi-459

nomial logistic regression model was of the same460

structure for all cross-validation analyses and based461

on the complete ADNI dataset. Disease status was462

best predicted by the relative brain volume, MMSE 463

score, and age. The comparison with the MMSE 464

score only (the basic model) and the relative brain 465

volume and age added (the expanded model) shows 466

that adding the relative brain volume (and age as an 467

adjustive factor for natural brain aging) improves the 468

model. The value of the Bayes factor indicates strong 469

evidence, and we can notice that the quality of MCI 470

detection increases (AUC: 67.04% versus 71.08%) 471

while maintaining the quality for AD (AUC: 93.35% 472

versus 93.25%). The average values of coefficients 473

of the multinomial logistic regression models for 5- 474

fold cross-validation and results for the whole ADNI 475

dataset are very similar, which confirms the homo- 476

geneity of the training dataset and consistency of the 477

screening process. Average values of statistics of pre- 478

diction obtained in 5-fold cross-validation for ADNI 479

show that we have outstanding results of classifica- 480

tion AD versus NC and AD versus others, with AUC 481

equaling 99.65% and 94.18%, respectively. Addition- 482

ally, the values of AUC for AD versus MCI and for NC 483

versus others are also very high (90.78% and 90.01%, 484

respectively). The moderate value of AUC we have 485

for MCI versus NC (79.30%) is still a very good result 486

if we take into account that the MCI group is hetero- 487

geneous and some patients from this group develop 488

AD, and some patients have stable MCI status. The 489

average value of balanced accuracy for three classes 490

(AD versus others, NC versus others, and MCI ver- 491

sus others) is 76.10% for 5-fold cross-validation. As 492

we aim to develop a supporting screening process, 493

detecting patients with the disease is the most impor- 494

tant, so PPV and NPV are the most important. The 495

value of NPV and PPV for AD versus NC is 100%. 496
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Fig. 3. The Sankey diagram for ADNI database: the change in disease status within 6, 12, 18, 24, 36, and 48 months. The figure includes
the number and percentage of subjects for disease status and time points; additionally, the number and percentage of subjects with changes
in diagnosis from MCI to AD is presented.

We have compared our classification results with497

results reported in the literature based on the ADNI498

dataset expect one study (13 studies used the ADNI499

dataset as a training dataset, one study used the inter-500

nal locally dataset as a training dataset and ADNI501

dataset as an independent validation dataset, and two502

studies used locally datasets as training dataset; 6503

studies among 16 used additionally independent val-504

idation dataset) (Table 4).505

Results obtained for the independent validation506

dataset (EDSD) confirm results of cross-validation507

analysis for ADNI. Our results for the independent508

validation dataset are not worse and, in many cases,509

even better than the results from previously pub-510

lished studies. Our model achieved the best balanced511

accuracy of 95.18% (balanced ACC) for the inde-512

pendent validation dataset when the highest value of513

balanced accuracy for AD versus NC from reported514

studies is 85.5% [10]. Although the highest reported515

value of AUC is 96.8, in this study, the decision is516

supported by the concentration of amyloid in CSF517

[10]. The second top-reported AUC value is 95.74%,518

but this study focuses on only two categories: AD519

and NC, while we consider MCI as a third one [7]. 520

The third value of AUC is 95.3%. This value is 521

slightly bigger than ours, but other performance indi- 522

cators like balanced accuracy, sensitivity, specificity, 523

PPV, and NPV for AD versus NC are better in our 524

approach [10]. The lowest value of AUC for AD 525

versus NC among publications presented in Table 4 526

is 69% [6]. The highest sensitivity value for AD 527

versus NC is 95.6% for analysis based on the con- 528

centration of amyloid in CSF and 94.2% for analysis 529

without amyloid data, while our estimated sensi- 530

tivity is better and equal to 96.94% [10]. For the 531

prediction specificity, the highest value observed is 532

98.31%, but this study focuses only on two cate- 533

gories: AD and NC, which means that it is easier 534

to achieve better results than for three categories 535

[7]. The second highest reported value of specificity 536

is 89.8%, which is lower than ours (93.42%) [49]. 537

The lowest value of specificity among publications is 538

68.33% [6]. Only one study from Table 4 contains the 539

results of NPV and PPV for AD versus NC, values 540

of these indicators are 95.3% and 73.4% for anal- 541

ysis based additionally on amyloid data, and 96.5% 542
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Table 4
Overview of previous studies based on the ADNI dataset

Studies Sample size Method Input Validation Groups Parameters Results

Agostinho et
al. 2022 [6]

The internal locally
dataset (n = 41): AD
(n = 20), NC (n = 21).

SVM MRI,
PiB-PET
and DTI

Internal locally
dataset and
external dataset
(ADNI (n = 330):
AD (n = 166), NC
(n = 164))

AD,
NC

AUC,
ACC,
SEN,
SPEC,
BACC

Dependent validation: AD versus NC: MRI: AUC = 96%,
ACC = 92.05%, SEN = 86.78%, SPEC = 86.78%, BACC = 92.05%; PiB
PET: AUC = 93%, ACC = 90.53%, SEN = 92%, SPEC = 89.43,
BACC = 90.53%; DTI: AUC = 86%, ACC = 76.84%, SEN = 76.17%,
SPEC = 82.09%, BACC = 79.84%; MRI multimodal: AUC = 99%,
ACC = 95.04%, SEN = 90.04%, SPEC = 99.04%, BACC = 95.04%
Independent validation: AD versus NC: MRI: AUC = 81%,
ACC = 78.02%, SEN = 74.12%, SPEC = 82.29, BACC = 78.20%; PiB
PET: AUC = 81%, ACC = 76.87%, SEN = 87.9%, SPEC = 68.33%,
BACC = 78.12%; DTI: AUC = 69%, ACC = 62.79%, SEN = 54.31%,
SPEC = 71.98%, BACC = 63.15%.

Gao et al.
2022 [7]

1134 subjects: AD
(n = 454), NC
(n = 680).

3DMgNet
(multigrid and
convolutional
neural
network)

MRI 10-fold
cross-validation
and external
in-house dataset
(AD (n = 75), NC
(n = 59))

AD,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation: ACC = 92.13%, AUC = 94.43%, SEN = 88.42%,
SPEC = 95%.
Independent validation: ACC = 87.91%, AUC = 95.74%,
SEN = 79.73%, SPEC = 98.31%.

Goenka et al.
2022 [8]

769 subjects: AD
(n = 70), MCI
(n = 224), NC (475)

CNN MRI 633 scans from
ADNI dataset

AD,
MCI,
NC

AUC,
ACC

Dependent validation: AD versus NC: ACC = 97.83%, AD versus MCI:
ACC = 98.68%, NC versus MCI: ACC = 99.10%, NC versus MCI
versus AD: ACC = 98.26%. AD versus NC: AUC = 94%, AD versus
MCI: AUC = 97%, NC versus MCI: AUC = 99%, NC versus MCI
versus AD: AUC = 98%.

Tang et al.
2021 [9]

560 subjects: AD
(n = 80), EMCI
(n = 230), LMCI
(n = 110), NC
(n = 140)

SVM, RF, DT MRI 10-fold
cross-validation

AD,
EMCI,
LMCI,
NC

AUC,
ACC,
SEN,
SPEC

RF: NC versus AD: ACC = 96.14%, SEN = 88.14, SPE = 92.81%,
AUC = 92%. NC versus EMCI: ACC = 77.45%, SEN = 79.51%,
SPE = 33.54%, AUC = 59%. NC versus LMCI: ACC = 87.56%,
SEN = 64.71%, SPE = 83.94%, AUC = 81%. EMCI versus AD:
ACC = 90.15%, SEN = 93.51%, SPE = 92.43%, AUC = 85%. LMCI
versus AD: ACC = 84.54%, SEN = 67.91, SPE = 72.46%, AUC = 89%.
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Dyrba et al.
2021 [10]

633 subjects: AD
(n = 189), MCI
(n = 220), NC
(n = 254)

CNN MRI and
PET

1-fold
cross-validation
and three
independent
datasets: ADNI-3
(n = 575), AIBL
(n = 606),
DELCODE
(n = 474).

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC,
BACC,
PPV, NPV

Dependent validation: AD versus NC: BACC = 88.9%, SEN = 94.2%,
SPE = 83.6%, PPV = 81.5%, NPV = 95.2% AUC = 94.9%. MCI versus
NC: BACC = 74.5%, SEN = 65.5%, SPE = 83.6%, PPV = 78.1%,
NPV = 74.1%, AUC = 78.5%. amyloid-positive AD versus
amyloid-negative NC: BACC = 94.9%, SEN = 95.6%, SPE = 94.3%,
PPV = 92.7%, NPV = 96.6%, AUC = 98.5%. amyloid-positive MCI
versus amyloid-negative NC: BACC = 86.7%, SEN = 79%,
SPE = 94.3%, PPV = 91.6%, NPV = 96.6%, AUC = 92.5%. Independent
validation DELCODE: AD versus NC: BACC = 85.5%, SEN = 94.2%,
SPE = 76.7%, PPV = 66.2%, NPV = 96.5% AUC = 95.3%. MCI versus
NC: BACC = 71%, SEN = 65.2%, SPE = 76.7%, PPV = 66.9%,
NPV = 75.3%, AUC = 77.5%. amyloid-positive AD versus
amyloid-negative NC: BACC = 83.3%, SEN = 95.9%, SPE = 70.7%,
PPV = 73.4%, NPV = 95.3%, AUC = 96.8%. amyloid-positive MCI
versus amyloid-negative NC: BACC = 72.2%, SEN = 73.7%,
SPE = 70.7%, PPV = 71.2%, NPV = 73.2%, AUC = 84%.

Marzban et al.
2020 [5]

406 subjects: NC
(n = 185), MCI
(n = 106), AD
(n = 115)

CNN MRI and
DTI

10-fold
cross-validation

AD,
NC,
MCI

AUC,
ACC,
SEN,
SPEC

AD versus NC: AUC = 94%, ACC = 93.5%, SEN = 92.5%,
SPEC = 93.9.
MCI versus NC: AUC = 84%, ACC = 79.6%, SEN = 62.7%,
SPEC = 89%

Li et al. 2020
[11]

404 subjects: NC
(n = 268), AD
(n = 136)

SVM MRI 10-fold
cross-validation
and independent
validation dataset
(AD (n = 41), NC
(n = 25))

AD,
NC

ACC,
SEN,
SPEC

Dependent validation dataset: AD versus NC: ACC = 97.03%,
SEN = 94.12%, SPEC = 98.51.
Independent validation dataset: AD versus NC: ACC = 84.85%,
SEN = 85.36%, SPEC = 84%

Bae et al. 2020
[12]

390 subjects: AD
(n = 195), NC
(n = 195)

CNN MRI 5-fold
cross-validation
and independent
validation dataset
(AD (n = 195), NC
(n = 195))

AD,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation dataset: AD versus NC: AUC = 94%,
ACC = 89%, SEN = 88%, SPEC = 91%.
Independent validation dataset: AD versus NC: AUC = 88%,
ACC = 83%, SEN = 76%, SPEC = 89%

Liu et al. 2020
[13]

449 subjects: AD
(n = 97), MCI
(n = 233), NC
(n = 119)

CNN MRI 5-fold
cross-validation
and independent
dataset (AD
(n = 45), MCI
(n = 46), and NC
subjects (n = 44)).

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC

Dependent validation: AD versus NC: ACC = 88.9%, SEN = 86.6%,
SPE = 90.8%, AUC = 92.5%. MCI versus NC: ACC = 76.2%,
SEN = 79.5%, SPE = 69.8%, AUC = 77.5%. Independent validation:
AD versus NC: AUC = 89.8% MCI versus NC: AUC = 72.2%

(Continued)
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Table 4
(Continued)

Studies Sample size Method Input Validation Groups Parameters Results

Zhang et al.
2019 [23]

857 subjects: NC
(n = 322), MCI
(n = 322), AD
(n = 213)

Graph
Analysis

MRI Data are randomly
partitioned into
80% and 20% for
training and
testing.

AD,
MCI,
NC

AUC AD versus MCI + NC: AUC = 73%, NC versus AD + MCI:
AUC = 72%, MCI versus AD + NC: AUC = 69%.

Westman et al.
2012 [24]

369 subjects: AD
(n = 96), MCI
(n = 162) and NC
(n = 111).

Orthogonal
Partial
Least-Squares
(OPLS)

MRI, PET,
CSF

7-fold
cross-validation

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC,
PPV, NPV

AD versus NC: MRI with CSF: ACC = 91.8%, SEN = 88.5%,
SPEC = 94.6%, PPV = 93.4%, NPV = 90.5% and AUC = 95.8%. MRI
only: ACC = 87%, SEN = 83.3%, SPEC = 90.1%, PPV = 87.9%,
NPV = 86.2% and AUC = 93% CSF only: ACC = 81.6%, SEN = 84.4%,
SPEC = 79.3%, PPV = 77.9%, NPV = 85.4% and AUC = 86.1%. MCI
versus NC: MRI with CSF: ACC = 77.6%, SEN = 72.8%,
SPEC = 84.7%, PPV = 87.4%, NPV = 68.1% and AUC = 87.6%. MRI
only: ACC = 71.8%, SEN = 66.7%, SPEC = 79.3%, PPV = 82.4%,
NPV = 62.0% and AUC = 81.5%. CSF only: ACC = 70.3%,
SEN = 66.7%, SPEC = 75.7%, PPV = 80.0%, NPV = 60.9% and
AUC = 74.9%.

Eskildsen et
al. 2012 [49]

808 subjects: AD
(n = 194), NC
(n = 226), pMCI
(n = 161), sMCI
(n = 227)

LDA MRI
(cortical
thickness
and age)

leave-one-out
(LOO) validation

AD,
NC,
pMCI,
sMCI

AUC,
ACC,
SEN,
SPEC

Independent feature sets: AD versus NC: ACC = 85.5%, SEN = 80.4%,
SPEC = 89.8%, AUC = 92%. pMCI versus sMCI: ACC = 67.8%,
SEN = 64.6%, SPEC = 70%, AUC = 68.2%. Dependent feature sets: AD
versus NC: ACC = 87.4%, SEN = 82.5%, SPEC = 91.6%,
AUC = 93.1%. pMCI versus sMCI: ACC = 68.3%, SEN = 67.7%,
SPEC = 68.7%, AUC = 74.7%.

Estévez-Santé
et al. 2020 [50]

148 subjects: AD
(n = 34), amnestic
MCI (n = 66), NC
(n = 48)

Logistic
regression

MRI 10-fold
cross-validation

AD,
amnes-
tic
MCI,
NC

AUC,
SEN,
SPEC

NC versus AD: HV/TIV (the best AUC): SEN = 79.4%, SPEC = 83.3%,
AUC = 89.3% 95%CI [82.6%; 96.0%]; The best SEN: SEN = 85.3%,
SPEC = 79.2%, AUC = 88%; The best SPEC: SEN = 79.4%,
SPEC = 83.3%, AUC = 89.3%. NC versus amnestic MCI: HV/TIV (the
best AUC): SEN = 72.7%, SPEC = 77.1%, AUC = 79.7% 95%CI
[71.6%; 87.8%]; The best SEN: SEN = 77.3%, SPEC = 62.5%,
AUC = 75.5%; The best SPEC: SEN = 60.6%, SPEC = 83.3%,
AUC = 76.3%.
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Martı́nez-
Torteya et al.
2015 [51]

The feature selection
set: AD (n = 48), MCI
(n = 98), NC (n = 48).
The calibration set:
AD (n = 71), MCI
(n = 124) and NC
(n = 74), The test set:
AD (n = 25), MCI
(n = 86) and NC
(n = 25).

Logistic
regression

MRI, PET Calibration set:
1,000 bootstrap
samples; test set:
Subjects
previously
excluded from the
study due to lack
of data (ADNI)

AD,
MCI,
NC

AUC,
ACC,
SEN,
SPEC

Calibration set: NC versus AD: ACC = 87.7% 95%CI [79.2%; 94.8%],
SEN = 84.9% 95%CI [69.6%; 96.4%], SPEC = 90.5% 95%CI [75%;
100%], AUC = 94.5% 95%CI [88.9%; 98.7%]. NC versus MCI:
ACC = 80.2% 95%CI [71.8%; 87.7%], SEN = 86.2% 95%CI [75%;
95.7%], SPEC = 70.4% 95%CI [53.1%; 87.5%], AUC = 86.4% 95%CI
[78.9%; 93.4%]. MCI versus AD: ACC = 83.8% 95%CI [78.1%;
89.2%], SEN = 47.6% 95%CI [28.1%; 68%], SPEC = 94.1% 95%CI
[88%; 98.9%], AUC = 83.8% 95%CI [76%; 91.1%]. Test set: NC
versus AD: ACC = 85.4%, SEN = 91.3%, SPEC = 80%, AUC = 92.2%.
NC versus MCI: ACC = 78.5%, SEN = 80.5%, SPEC = 75%,
AUC = 84.1%. MCI versus AD: ACC = 80%, SEN = 33.3%,
SPEC = 93%, AUC = 81.5%.

Tokumitsu et
al. 2021 [52]

240 subjects (Towada
City Hospital): Early
AD (n = 128), MCI
(n = 112)

Logistic
regression

MRI,
SPECT

- Early
AD,
MCI

AUC MCI versus early AD: MMSE scores alone: AUC = 83.5% 95%CI
[78.4%; 88.6%] Stepwise selection model: AUC = 87% 95%CI [82.4%;
91.6%]

Sheelakumari
et al. 2018 [53]

68 subjects (Memory
and Neurobehavioral
Disorders Clinic,
Kerala): AD (n = 15),
amnestic MCI
(n = 33), NC (n = 20)

Logistic
regression

MRI, DTI,
1H MRS

- Early
AD,
amnes-
tic
MCI,
NC

AUC,
SEN,
SPEC

MCI versus NC: T1 weighted MRI: AUC = 77.5%, SEN = 78.8%,
SPEC = 70%. DTI: AUC = 79.8%, SEN = 90.9%, SPEC = 50%. 1H
MRS: AUC = 78.7%, SEN = 87.9%, SPEC = 60.1%. Multimodal (MRI,
DTI, MRS): AUC = 89%, SEN = 93.9%, SPEC = 70%. MCI versus AD:
T1 weighted MRI: AUC = 82.9%, SEN = 90.9%, SPEC = 60.6%. DTI:
AUC = 85.4%, SEN = 72.7%, SPEC = 87.9%. 1H MRS: AUC = 83.6%,
SEN = 81.8%, SPEC = 75.8%. Multimodal (MRI, DTI, MRS):
AUC = 92.6%, SEN = 93%, SPEC = 85.6%.

AIBL, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing; DELCODE, DZNE multicenter observational study on Longitudinal Cognitive Impairment and Dementia; EMCI,
early mild cognitive impairment; LMCI, late mild cognitive impairment; pMCI, progressive MCI; sMCI, stable MCI; CNN, convolutional neural network; LDA, linear discriminant analysis;
SVM, support vector machine; RF, random forest; DT, decision tree; AUC, the area under the receiver-operating-characteristic curve; ACC, accuracy; SEN, sensitivity; SPEC, specificity; BAAC,
balanced accuracy; PPV, positive predictive value; NPV, negative predictive value; HV, hippocampal volume; TIV, total intracranial volume; PET, positron emission tomography; SPECT, a single
photon emission computed tomography; 1H MRS, Proton magnetic resonance spectroscopy.
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and 66.2% for analysis without amyloid data, respec-543

tively [10]. Our results are again better; the value of544

NPV is 97.93% for AD versus NC, while PPV is545

90.48%.546

The comparison of results for 5-fold cross-547

validation shows that our model achieves better548

results than all reported studies for the classification549

task of AD versus NC for the dependent validation550

(Table 4) [5, 6–13, 23, 24, 49–53]. The prediction551

results of AD versus NC from reported studies show552

that the highest AUC is 99% [6], when our result553

is 99.65%, the highest accuracy for AD versus NC554

is 97.83% [8], when our result is 100% (we have555

the balanced ACC). The highest sensitivity and556

specificity values are 95.6% [10] and 99.04 [6],557

respectively, when our model achieved 100% for558

both parameters. Only two studies from Table 4559

contain the results of NPV and PPV for AD versus560

NC; the highest value of NPV is 96.6% [10] for561

analysis based additionally on amyloid data, and the562

highest value of PPV is 93.4% [24] when our model563

achieved 100% for both parameters.564

Most studies used SVM and CNN methods, while565

our method is based on multinomial logistic regres-566

sion. Four of the studies used binomial logistic567

regression as a classification method. The highest568

value of AUC for AD versus NC of these stud-569

ies (only two of these studies compare AD versus570

NC) is 94.5% with 95%CI [88.9%; 98.7%] when our571

result is better, and the value of AUC is 99.65% with572

95%CI [99.18%; 100.00%] [51]. Moreover, the high-573

est value of AUC for AD versus MCI comparison574

is 92.6% for the multimodal classification method575

(MRI, DTI, 1H MRS), but for the individual modal-576

ity, T1 weighted MRI provides the value of AUC:577

82.9% while our result is 90.78 with 95%CI [87.45%;578

94.11%] [53]. For MCI versus NC, the highest AUC579

result reported equals 89% for the multimodal clas-580

sification method (MRI, DTI, 1H MRS), but for the581

individual modality, T1 weighted MRI, the value of582

AUC is 77.5%, while our model achieves 79.30%583

(95%CI [74.35%; 84.24%]) [53]. For another study,584

based on MRI, the value of AUC for MCI versus585

NC is 79.7%, but this value is within our confi-586

dence interval [50]. To summarize, our multiclass587

model is significantly better for NC or MCI versus588

AD comparison, and it is not worse for MCI versus589

NC.590

Among these four studies mentioned above, the591

highest sensitivity value for AD versus NC is 90.5%592

for analysis based on the MRI and PET and 85.3%593

for analysis based on the MRI and cognitive tests594

only [50, 51]. The highest value observed for pre- 595

diction specificity is 91.3% [51]. Both these results 596

are lower than ours. For MCI versus NC compari- 597

son, the highest sensitivity value is 93.3% for analysis 598

based on the multimodal classification method (MRI, 599

DTI, MRS) and 78.8% for the individual modality, 600

T1 weighted MRI, while our estimated sensitivity 601

is 80.67% with 95%CI [75.63%; 85.72%] [53]. For 602

another study, based on MRI, the value of sensitivity 603

for MCI versus NC is 83.3%, but this value is within 604

our confidence interval [50]. However, the value of 605

the F1-score for this analysis is 70.16%, while our 606

estimated value is better and equal to 75.55%. The 607

highest specificity value is 86.2% for analysis based 608

on MRI and PET and 77.3% for analysis based on 609

MRI, while our model achieves 70.08% with 95%CI 610

[61.92%; 78.24%] [50]. The value of the F1-score for 611

this analysis is 69.12%, while our estimated value is 612

better and equal to 75%. For the AD versus MCI com- 613

parison, the highest value of sensitivity is 94.1% for 614

analysis based on MRI and PET and 60.6% for anal- 615

ysis based on MRI, while our value of sensitivity is 616

63.99% with 95%CI [48.61%; 79.37%] [51, 53]. For 617

the prediction specificity, the highest observed value 618

is 93% for analysis based on MRI, DTI and 1H MRS, 619

and 90.9% for analysis based on MRI, while our esti- 620

mated specificity is 88.22% with 95%CI [81.53%; 621

94.9%] [53]. However, the value of the F1-score for 622

this analysis is 72.72%, while our estimated value 623

is better and equal to 75.55%. To summarize, our 624

model is better for the AD versus NC comparison, 625

and it is not worse for MCI versus NC and AD versus 626

MCI. 627

In our work, we compared the predictive model, in 628

which MMSE is the independent variable, with the 629

predictive model with an additional MRI-based vari- 630

able and age (where age has a corrective function). 631

The third of these publications shows results for a 632

similar situation: the predictive model with a com- 633

bination of MMSE, parameters calculated based on 634

MRI data and additional parameters obtained from 635

SPECT (a single photon emission computed tomog- 636

raphy) data in comparison to the model with MMSE 637

alone [52]. Their result for MCI versus AD compar- 638

ison is lower than our 95% confidence interval for 639

AUC, which means that our result is better while our 640

model is simpler and does not require, e.g., SPECT 641

as an additional biomarker. 642

Additionally, among MCI patients predicted as AD 643

inconsistently with the original diagnosis, 60% from 644

ADNI and 76.47% from EDSD were re-diagnosed as 645

AD within a 48-month follow-up.
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Conclusions646

Our work shows that the proposed T1-weighted647

MRI-based biomarker, combined with MMSE score648

and adjusted for age, gives excellent early-stage AD649

status predictions. Moreover, our method, as based on650

MRI, does not require invasive and expensive labora-651

tory tests and, as a classical statistical learning model,652

does not require large calculation power.653

Most papers focus on the diagnosis process rather654

than screening, and only one study contains the655

results of NPV and PPV when almost all have sen-656

sitivity and specificity results. Our model achieved657

better results for NPV and PPV for AD versus NC658

and MCI versus NC. Many advanced methods (e.g.,659

CNN) with excellent results are published, but these660

methods are not easily applicable in daily medical661

practice. Moreover, these methods are sensitive to662

measurement protocols and preprocessing and have663

a problem with replicable, so much time is needed to664

use these methods by physicians in their daily clin-665

ical routine. Our model is based on easily available666

parameters (T1-weighted MRI is standard) and can667

be calculated in a simple way, so our method is ready668

to use in medical practice.669

In this paper, we proved that incorporating the670

T1-weighted MRI-based biomarker into the standard671

clinical AD predictors leads to a handy model for672

daily clinical routine and improves the screening pro-673

cess. Additionally, we demonstrated that our model674

detects some patients transitioning from MCI to AD675

as AD patients a few years earlier before regular676

medical diagnosis, it means that T1-weighted MRI677

is utility in screening for MCI at risk of progression.678
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[50] Estévez-Santé S, Jiménez-Huete A; ADNI group (2020) 958

Comparative analysis of methods of volume adjustment 959

in hippocampal volumetry for the diagnosis of Alzheimer 960

disease. J Neuroradiol 47, 161-165. 961

[51] Martı́nez-Torteya A, Treviño V, Tamez-Peña JG 962

(2015) Improved diagnostic multimodal biomarkers for 963

Alzheimer’s disease and mild cognitive impairment. 964

Biomed Res Int 2015, 961314. 965

[52] Tokumitsu K, Yasui-Furukori N, Takeuchi J, Yachimori K, 966

Sugawara N, Terayama Y, Tanaka N, Naraoka T, Shimoda 967

K (2021) The combination of MMSE with VSRAD and 968

eZIS has greater accuracy for discriminating mild cogni- 969

tive impairment from early Alzheimer’s disease than MMSE 970

alone. PLoS One 16, e0247427. 971

[53] Sheelakumari R, Sarma SP, Kesavadas C, Thomas B, Sasi 972

D, Sarath LV, Justus S, Mathew M, Menon RN (2018) Mul- 973

timodality neuroimaging in mild cognitive impairment: A 974

cross-sectional comparison study. Ann Indian Acad Neurol 975

21, 133-139. 976

https://adni.loni.usc.edu/methods/documents/mri-protocols/
https://adni.loni.usc.edu/methods/documents/mri-protocols/
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI-1_Protocol.pdf
https://adni.loni.usc.edu/wp-content/themes/freshnews-dev-v2/documents/clinical/ADNI-1_Protocol.pdf
https://www.fil.ion.ucl.ac.uk/spm/doc/spmbib.pdf

